Imaging of Vascular Anomalies

Delma Y. Jarrett, MD*, Muhammad Ali, MD, Gulraiz Chaudry, MB, ChB

INTRODUCTION

Vascular anomalies comprise a diverse group of conditions in the pediatric and adult age group. The subject is often complicated by the use of improper descriptive terminology. Although the biologic classification proposed by Mulliken and Glowacki in 1982 and later adopted by the International Society for the Study of Vascular Anomalies substantially helped to resolve this dilemma, vague terminology continues to be used in the clinical setting and medical literature. Accurate characterization of vascular anomalies is crucial in predicting the clinical course, prognosis, and need for intervention. It is therefore important to adhere to a standard classification system in clinical assessment and radiologic characterization.

Mulliken and Glowacki divided vascular anomalies into two groups: hemangiomas and malformations, with the first category later expanded to include multiple vascular tumors in addition to hemangiomas. This distinction is based on endothelial cell characteristics. Vascular tumors consist of proliferating cells with increased mitotic activity. Malformations arise from abnormal vascular channels in the absence of abnormally proliferating endothelium.

Infantile hemangiomas (IH) are the most common type of vascular tumor; however, they must be distinguished from other vascular tumors including rapidly involuting congenital hemangiomas (RICH), noninvoluting congenital hemangiomas (NICH), kaposiform hemangioendothelioma (KHE), and tufted angioma.

Vascular malformations can be further divided into slow-flow, fast-flow, and mixed lesions. Slow-flow lesions include capillary, venous, and lymphatic malformations (LM). Fast-flow lesions are arteriovenous malformations (AVM) and arteriovenous fistulas (AVF).

IMAGING

Although the diagnosis can sometimes be made clinically, radiologic assessment is often helpful...
in the management of vascular anomalies, particularly for atypical or deep lesions, and is important for treatment planning. Ultrasound (US) and magnetic resonance imaging (MRI) are the mainstay of imaging vascular anomalies, with limited roles for radiography and computed tomography (CT).

US is a relatively accessible, noninvasive modality that can be performed in the often young patient population without sedation or ionizing radiation. With gray-scale imaging, the vascular anomaly can be characterized as cystic, composed of channels, or as a solid mass with well or poorly defined margins. Calcifications can be identified as echogenic foci with posterior shadowing. With Doppler imaging, one can assess for the presence and distribution of blood flow to the lesion. Spectral waveforms can determine if the flow is arterial or venous, and assess for the presence of shunting. Skin lesions should be imaged with a high-frequency linear transducer, although deeper lesions necessitate lower-frequency transducers.

MRI is superior to US in evaluating the extent of the lesion, including the tissue planes and adjacent structures involved. Routine sequences include short time inversion recovery (STIR)/T2-weighted images with fat saturation (FS), which for most vascular anomalies provide sharp contrast between the lesion and normal tissue. Depending on the appearance of these fluid-sensitive sequences, T1-weighted FS postcontrast images may be useful to assess perfusion to the anomaly. MR angiography (MRA) is sometimes helpful in the assessment of fast-flow vascular anomalies. Techniques include noncontrast imaging angiography using two-dimensional time-of-flight or phase-contrast imaging, or dynamic imaging with gadolinium-enhanced time resolved MRA, which allows the arterial and venous phases to be imaged separately, demonstrating feeding arteries, draining veins, and location of shunts. Large vessels can be imaged using spin echo (SE) sequences, where they appear as signal voids, or gradient recall echo (GRE) sequences, where vessels are bright. GRE images also demonstrate calcification and blood products, either from bleeding of the anomaly or from thrombus.

Radiographs may be used to assess the bony changes associated with vascular anomalies. These are almost always related to malformations rather than hemangiomas and include periosteal reaction, well-defined lucent lesions in the bone, leg length discrepancy, and overgrowth of the affected side. CT is largely reserved for accurate evaluation of bone destruction.

VASCULAR TUMORS
Infantile Hemangiomas

Background and clinical presentation
IH are the most common tumors of infancy, with risk factors including fair skin, prematurity, and female gender. They are most commonly found in the head and neck region, followed by the trunk, then the extremities. Subtle skin findings are sometimes present at birth, although in most cases the diagnosis is made at 2 to 4 weeks of age. IH then typically undergo a 6- to 8-month period of rapid growth in neonatal life, plateauing at 10 to 12 months, followed by a period of involution lasting 1 to 7 years.

The cutaneous manifestation depends on the depth of the tumor, with superficial lesions appearing raised and red ("strawberry appearance"), whereas the overlying skin can be normal with deeper lesions.

Radiologic imaging

Ultrasound
The US appearance of IH depends on whether it is in the proliferating to plateau phase or the involuting phase. In the earlier phases, it appears as an echogenic, well-circumscribed soft tissue mass. Gray-scale imaging can occasionally demonstrate anechoic channels, corresponding to the high-flow vessels. Color Doppler imaging is better at demonstrating the vascularity, with high vessel density seen (five or more vessels in a square centimeter), and arterial and venous waveforms obtained (Fig. 1A, B). Involuting IH are rarely imaged because they are unlikely to present a diagnostic dilemma at that stage, but have been described as isoechoic, difficult to differentiate from adjacent soft tissues, and with no demonstrable blood flow.

Magnetic resonance imaging
The MRI appearance of IH also depends on its stage of growth. During the proliferative and plateau phase, they are seen as focal, lobulated soft tissue masses that are isointense to muscle on T1-weighted images, hyperintense on T2-weighted images, and demonstrate homogeneous enhancement (see Fig. 1C–F). SE and GRE sequences demonstrate enlarged high-flow vessels within the mass, although intraläsional flow voids may be difficult to discern in early infancy. These features can help to distinguish IH from other tumors, such as sarcomas, which tend to enhance heterogeneously, and have a more random distribution of vessels.

Histologically, involuting IH are replaced by fibrofatty tissue. This is reflected in their MRI appearance, where they follow the signal intensity of the surrounding fat. There is also a decrease in enhancement and visualized vessels.
Angiography

Angiographically, IH appear as well-circumscribed masses, with a lobular pattern of intense tissue staining. They are supplied by slightly enlarged but otherwise normal branches of systemic arteries, demonstrate a distinct tumor blush, and are drained by small veins that communicate with dilated but otherwise normal local veins. Typically, no direct AV shunting is seen within the mass.

Imaging associations

In certain cases, additional imaging is required to screen for other potential anomalies. The presence of five or more...
cutaneous hemangiomas raises suspicion for the presence of visceral, particularly liver, hemangiomas. These infants should be screened by US or MRI. Large cervicofacial hemangiomas in a “beard” distribution are associated with subglottic airway hemangiomas, which in addition to direct imaging by endoscopy can be imaged MRI, CT, and high-resolution US. Large facial hemangiomas are associated with PHACE syndrome. Those in the lumbosacral region are associated with spinal anomalies including tethered cord, spinal lipoma, and intraspinal hemangioma, and with SACRAL and LUMBAR syndromes (Table 1).

Treatment and complications
Because IH spontaneously involute, most do not require treatment. However, medical therapy may be indicated if the location of the hemangioma compromises vision or the airway. Currently, the first line of treatment is oral administration of propranolol or steroids. In addition, if multifocal hepatic hemangiomas are identified, thyroid-function testing should be performed as soon as possible. The triiodothyronine deiodinase produced by these tumors peripherally deactivates T3 and these infants often require large doses of thyroid hormone replacement for correction. Intralesional injections, embolization, and resection are generally reserved for a small minority of hemangiomas causing significant cosmetic deformity or cardiac failure.

Congenital Hemangiomas

Clinical presentation
In contrast to IH, CH reach their maximum size at the time of birth and can sometimes be diagnosed prenatally. Unlike IH, there is no gender predilection and the tumors do not test positive for glucose transported protein 1. CH demonstrate two patterns of clinical progression. Most undergo rapid postnatal involution, resolving by 14 months of age, as a RICH. Alternatively, the CH never regresses and continues to grow proportionately with the child, and is called NICH. Some of the lesions demonstrate initial rapid decrease in size and then plateau and remain unchanged. Therefore, it is possible that NICH represents a later stage of RICH in some patients.

CH are usually solitary and often involve the head or the limbs near a joint. The involved skin is usually blue or violaceous, with telangiectasias; a pale peripheral halo is more characteristic of NICH than RICH.

Radiologic imaging
Ultrasound The sonographic findings in CH are often similar to IH, with a fast-flow soft tissue mass seen in both cases (Fig. 2). Features more suggestive of CH are heterogeneity, calcifications, and increased conspicuity of intrallesional vessels. RICH and NICH cannot initially be easily distinguished from each other by US. However, as they involute, RICH are characterized by tortuous compressible channels demonstrating venous flow. These correspond to the histologic finding of thin-walled drainage channels separated by fibrous tissue. NICH are more likely to demonstrate microshunting, manifested as increased turbulence or pulsatility in the venous waveforms.

Magnetic resonance imaging CH are isointense on T1- and hyperintense on T2-weighted images,
with intense enhancement after contrast administration. They are more likely to have heterogeneous enhancement and poorly defined borders than IH, although they still lack surrounding edema, which can be seen in more aggressive lesions (Fig. 3). On SE and GRE sequences, feeding and draining vessels can be seen.

Angiography NICH demonstrate arterial feeding vessels, with tumor-like capillary blush. They have dilated draining veins as can be seen with AVF or AVM (Fig. 3). However, unlike these entities, NICH do not demonstrate early venous drainage.

Because of their natural history, RICH are less likely to be assessed angiographically, but do demonstrate inhomogenous parenchymal staining; large, irregular, and disorganized feeding arteries; direct AV shunts; and intravascular thrombi.

Complications and treatment
Because of the rapid involution in most RICH cases, no treatment is required. In a few cases, there is redundant skin after involution with central fissuring and ulceration, which necessitates surgical resection. NICH are surgically resected.

Kaposiform Hemangioendothelioma

Background and clinical presentation
KHE is a rare vascular lesion that can be congenital, with 50% presenting at birth in one series, but can also present later in childhood. They grow rapidly, and are locally aggressive, but have been seen to spontaneously regress. There is no gender preference. They often involve the trunk, extremities, retroperitoneum, and rarely the cervical/facial region. The overlying skin is red to purple in color with a rim of ecchymosis, and is warm and edematous to palpation. Importantly, there is a frequent association with Kasabach Merritt phenomenon (KMP), a consumptive coagulopathy, with 90% of cases of KMP occurring secondary to KHE.

Ultrasound
On US, KHE has variable echogenicity. The margins are ill defined, a major distinguishing characteristic from IH (Fig. 4A, B). They may also contain foci of calcification, a feature not seen in IH. Although there have been reports of decreased vessel density compared with IH, color Doppler imaging characteristics cannot reliably differentiate the two lesions.
On MRI, KHE are seen as soft tissue masses that are hypointense to isointense to muscle on T1-weighted images, and heterogeneously hyperintense on T2-weighted images. They are infiltrative, extending to involve multiple tissue planes, with ill-defined borders, stranding in the subcutaneous tissues, and overlying skin thickening. On postgadolinium T1-weighted images, the tumor demonstrates a strong reticular enhancement pattern, corresponding to the same pattern seen on T2-weighted images (Fig. 4C–E). Associated prominent vascular channels are seen either on postcontrast images or as flow voids on SE sequences. Compared with IH where the size of the feeding and draining vessels is proportional to the size of the tumor, the vessels of KHE are small relative to tumor size. KHE may contain hemosiderin, blood products, or fibrosis, which are best demonstrated on GRE images.

Complications and treatment
There is significant mortality associated with KHE, ranging from 10% to 30%, with the rate higher for retroperitoneal tumors. This is caused by the sequela of local invasion and the high association with KMP. The mainstay of treatment is medical therapy with agents including vincristine, corticosteroids, ticlopidine, interferon-α, and propranolol. Surgical resection may be possible in localized cases.

SLOW-FLOW VASCULAR MALFORMATIONS
Venous Malformation

Background and clinical presentation
VM are congenital malformations characterized by dilated venous channels deficient in smooth muscle. These channels also lack normal valves and have stagnant flow. VM may take many different forms, ranging from varicosities and ectasias to complex channels and localized spongiform masses. Like all vascular malformations, they are present at birth. VM do not regress and grow proportionately with the patient, with periods of enlargement during puberty and pregnancy because of hormonal influence. On physical examination, VM

Fig. 3. NICH in 8-year-old girl born with purple birthmark on her right thigh, which grew proportionately with her. (A) Axial T2 FS image through the right thigh shows mass in the anterior subcutaneous tissues with poorly defined margins. It contains flow voids from prominent intrallesional vessels (arrows). The mass is hypointense on T1 image (B) and demonstrates diffuse enhancement on T1 FS postcontrast image (C). (D) MR angiogram shows numerous prominent feeding arteries, draining veins, and tumor-like blush of the mass.
are soft, compressible, and nonpulsatile. The over-
lying skin may be normal or have a bluish tinge.
Maneuvers that increase venous pressure (depen-
dant position, crying, Valsalva) cause them to
increase in size.32,33 VM most commonly involve
the head and neck, followed by the extremities,
with truncal involvement less frequently seen.
Although skin involvement is common, VM can
extend to or have isolated involvement of muscle,
bone, and abdominal organs.34

Radiographic imaging

Ultrasound There is a varied US appearance of
VM that reflects the different morphologies of
this entity, ranging from the hypoechoic or het-
rogenous cavernous spaces, to anechoic vascular channels
of dysplastic veins (Fig. 5).7,33,35 When Doppler
flow is present, it is monophasic, low-velocity
flow.33 Twenty percent of VM show no flow on
Doppler imaging because of either undetectably
slow flow or true lack of flow secondary to throm-
bosis.34 In this case, the lack of cystic cavities can
help distinguish them from LM.35 Phleboliths can
be seen as hyperechoic, shadowing foci.

Magnetic resonance imaging STIR or T2 FS
sequences are the most useful to assess the extent
of the lesion, which can often be underestimated
on clinical examination. VM appear as hyperin-
tense on T2-weighted images and hypointense
on T1-weighted images (Fig. 5). With hemorrhage
or thrombosis, the VM may demonstrate increased
heterogeneous signal on T1-weighted images.34,36
Fluid-fluid levels can be seen in regions of low or no
flow. These malformations commonly extend from
the subcutaneous fat to involve muscle and fascia,
sometimes involving the bone, tendons, and joints.
In the extremities, they tend to be oriented along
the long axis, parallel to fascial planes.31 The char-
acteristic phleboliths of VM and potential blood
products/hemosiderin are best seen on GRE
sequences.

Postcontrast, there is often marked but hetero-
genous enhancement.34,36 On SE sequences,
there are no flow voids, as can be seen with high-
flow vascular anomalies.36 No prominent feeding
artery or draining vein is seen.31 Although two-
dimensional time-of-flight venography may demon-
strate dysplastic veins, it is rarely required to either
establish a diagnosis or guide further management.

Initial assessment of VM should include a wide
field of view, to assess the full extent of the lesion.
This is important because incomplete resection of
a VM can cause flare in size and symptoms of the
residual malformation.31

MRI may also demonstrate soft tissue changes
related to the VM, such as fatty replacement,
atrophy of the adjacent musculature, or hypertrophy of the subcutaneous fat compared with the contralateral side.31

Angiography Angiographic evaluation of VM is best performed with direct intralesional injection of contrast. With arterial injection, normal arteries are seen with no evidence of AV shunting. There is also limited assessment of the VM, because of poor opacification of proximal veins caused by slow flow.35,36 Therefore, there is no role for arteriography in the diagnosis or management of VM.

Direct venography and intralesional injection are sometimes better in characterizing the VM, but visualization is limited to the cannulated vessels and associated draining vein (Fig. 5F).36 Using US guidance, a needle is advanced into the VM and a small volume of low osmolarity iodinated contrast is injected. Based on the venographic findings, some have characterized the VM as one of four types: (1) isolated VM with no visible draining veins, (2) drainage into normal veins, (3) dysplastic draining veins, and (4) venous ectasia. Type 3 or 4 lesions are higher risk for sclerotherapy because of the potential for distal embolization.32,37

Radiographs and CT Radiographs may reveal the presence of a soft tissue mass or phleboliths, which are highly suggestive of VM (Fig. 5G). However, the main use of radiographs and CT is in assessing skeletal manifestation of VM, such as direct osseous involvement or associated bony overgrowth. The malformations appear as hypodense or heterogeneous in density, with slow, peripheral enhancement. CT is not as helpful as MRI in characterizing the type or extent of the lesion.34 Extension of the malformation into the deep musculature and bone is best appreciated on MRI. Therefore, there is no role for routine use of CT in the assessment of VM.

Treatment and complications VM are referred for treatment because of pain, cosmetic issues, or loss of function caused by location. They can cause localized intravascular coagulopathy, which is a separate entity from KMP.3 Sclerotherapy is the primary treatment in most cases, with agents including Ethibloc (Ethnor Laboratories/Ethicon, Norderstedt, Germany), sodium tetradecyl sulfate, and absolute alcohol.37 Direct injection and venography are performed before sclerotherapy to assess the VM and the deep venous anatomy. Local complications of sclerotherapy include skin necrosis, ulceration, and peripheral nerve damage. Rare systemic complications can occur if ethanol passes into the systemic circulation, causing hemolysis, renal toxicity, and cardiac arrest.34

![Fig. 5](image_url). Young girl with extensive venous malformation of the right arm. US images obtained at 3 years of age demonstrate a hypoechoic, spongiform malformation (A) with little flow seen on color Doppler (B). MRI also obtained at 3 years of age. Fluid-weighted (C) and postcontrast (D) sequences demonstrate hyperintense tubular and lobulated structures involving all the soft tissue layers with heterogeneous enhancement after contrast. Postcontrast MRI (E) and conventional venography (F) clearly demonstrate the associated abnormal ectatic veins. (G) Radiograph of the right hand shows multiple phleboliths (arrows).

Multiple treatments are often necessary. Interim MRI can be performed to assess response to treatment but there should be a delay between sclerotherapy and repeat imaging of several months to allow posttreatment inflammation to resolve. After treatment, the VM usually demonstrates increased heterogeneity on T1- and T2-weighted images and decrease in size. Postcontrast imaging can show potential areas of residual perfusion. However, because the diagnosis is already established, the use of contrast is rarely necessary. Surgical resection may be performed if sclerotherapy does not provide adequate results.

Lymphatic Malformation

Background and clinical presentation

LM result from disordered development of the lymphatic system. Dilated lymphatic channels lack normal communication to the lymphatic system.

Depending on the size of these spaces, they can be characterized as microcystic, macrocystic, or mixed. There is considerable variability in the criteria used to designate a malformation as microcystic or macrocystic. At our institution, only lesions or parts of lesions containing cysts that are too small to be accessed and aspirated with a hypodermic needle are designated as microcystic.

Although congenital, only 50% of LM are seen at birth, with 90% diagnosed by the age of 2. A total of 70% to 80% involve the head-neck region. They usually present as asymptomatic masses, which enlarge because of hemorrhage or infection. The overlying skin usually appears normal, but may have capillary staining or cutaneous blebs or vesicles, which are pathognomonic for LM.

A small minority have been reported to spontaneously regress.

Radiologic imaging

Ultrasound

Macroscopic LM appear as cysts, sometimes containing echogenic debris. No blood flow is identified within the cavities themselves, although small arteries and veins may be seen within the cyst walls or intervening stroma (Fig. 6A). In microcystic LM, the individual cysts are too small to discern. They appear as echogenic regions with soft tissue thickening (Fig. 7A).

Magnetic resonance imaging

Macroscopic LM are isointense to hypointense on T1-weighted and hyperintense on fluid sensitive/T2-weighted images (see Fig. 6). Fluid-fluid levels are common, especially when there is associated hemorrhage. They demonstrate no or minimal peripheral enhancement involving the cyst walls. The venous channels are usually normal, although occasionally large or anomalous veins can be seen.

As on US, the individual cysts of microcystic LM cannot be discerned. They appear as a region of diffuse hypointense signal on T1-weighted images and hyperintense on T2-weighted images. Microcystic LM can on occasion show mild diffuse enhancement, which can lead to confusion with a solid mass (see Fig. 7).

Complications and treatment

In the extremity, LM can cause local gigantism, with bony and soft tissue overgrowth. Diffuse LM of the chest can cause chronic chylous effusion, and in the gastrointestinal tract a protein-losing enteropathy. In Gorham-Stout disease, LM of the bone and surrounding soft tissue causes osteolysis.

The two most common complications are bleeding and hemorrhage. LM can cause significant morbidity depending on the area of involvement (eg, causing mass effect on the trachea in neck and mediastinal involvement, or speech difficulties if the tongue is involved). Treatment options include sclerotherapy and surgical resection. Sclerotherapy is primarily effective for macrocystic LM, or the macrocystic component of a mixed lesion, with agents including bleomycin, Ethibloc, ethanol, OK-432 (Chugai Pharmaceutical Co, Ltd, Tokyo, Japan), doxycycline, and sodium tetradecyl sulfate. Microcystic LM has a much less favorable response to sclerotherapy, although there have been encouraging reports with the use of intralesional bleomycin. Complete resection is more easily accomplished with macrocystic LM than the more infiltrative and diffuse microcystic LM. When possible, microcystic LM are managed conservatively.

FAST-FLOW LESIONS: AVM AND AVF

Background and Clinical Presentation

AVM are rare, resulting from an error in vascular development. They are composed of a nidus of anomalous connections between arteries and veins without intervening capillary bed. Like all vascular malformations, they are present at birth, although they may not be clinically apparent until later. On examination, AVM may present as a pulsatile mass with thrill, warmth, and redness. Clinically, they can be categorized according to the Schobinger classification: stage 1, quiescence; stage 2, expansion (with enlargement of the AVM); stage 3, destruction (skin ulceration and bleeding); and stage 4, decompensation (cardiac failure). AVM expand over time, not because of cellular proliferation, but related to increased blood flow and the recruitment of adjacent normal vessels by shunts across the low-resistance arteriovenous
connections. Like VM, puberty and pregnancy can cause progression of the lesion.47 AVM can also enlarge because of trauma, including the iatrogenic trauma of biopsy, ligation, or partial excision.8,47

AVF may be congenital or posttraumatic. Unlike AVM, there is usually a single arteriovenous communication present. However, if long-standing, AVF can also recruit additional vessels, simulating AVM.48

![Radiologic Imaging](image)

Fig. 6. Macrocystic LM in a 2-month-old girl who presented with upper airway obstruction. (A) US shows large anechoic cyst. (B) Coronal fluid-sensitive sequence demonstrates a hyperintense macrocystic lesion, with more complex lower-intensity component medially, reflecting hemorrhage. (C) Postcontrast coronal T1 FS image shows only peripheral enhancement. Patient underwent three sclerotherapy treatments with doxycycline, with significant decrease in size of the LM as seen on coronal FSEIR (D) and T1 FS postcontrast (E) images (arrow).

Radiologic Imaging

US imaging shows no soft tissue mass. Multiple, enlarged subcutaneous arteries and veins are present, with high-flow, low-resistance wave forms in the arteries and arterialized wave forms in the draining veins.7,8

Similarly on MRI, the dominant feature of AVM and AVF are the dilated, often tortuous feeding
arteries and draining veins with the absence of a mass (Fig. 8). These can be seen on SE sequences as flow-related signal void or as bright signal on GRE. There may be edema and enhancement in the surrounding tissues, although no focal mass is present. Similar to VM, associated soft tissue changes may be present, including fatty infiltration of the adjacent musculature, and prominence of subcutaneous fat compared with the contralateral side. The enlarged feeding arteries, draining veins and nidus with shunt can be confirmed with angiography.

Complications and Treatment

AVM and AVF cause pain and ulceration secondary to ischemia from steal phenomenon. The shunting causes increased cardiac output.

Treatment of AVM is complex. Options include surgery, embolization, or a combination of the two, although complete cure is often not achieved. The treatment is primarily aimed at symptom relief and decreasing deformity. Embolization can be used preoperatively to reduce blood loss, or as primary therapy for lesions not amenable to surgery. Embolization agents include n-butyl cyanoacrylate, Onyx (ev3, Irvine, CA, USA), and ethanol. Surgery offers the best long-term outcome, but recurrence rates are still high, particularly if the AVM is not small and localized. Incomplete excision can lead to worsening of the malformation. The target of treatment should be the nidus of the AVM. It is important that proximal feeding arteries not be ligated with surgery or occluded with embolization because subsequent recanalization and vasculogenesis stimulate enlargement, and access to the nidus would be blocked for future embolization.

AVF can be treated by obliterating the anomalous arteriovenous connection, most commonly with coils. As with AVM, occluding the proximal feeding artery leads to poor response.
SYNDROMES ASSOCIATED WITH VASCULAR ANOMALIES

Like IH, vascular malformations are also seen in a variety of syndromes, which can be grouped into those containing slow-flow lesions and those with fast-flow lesions. The role of imaging is to delineate the individual fast- or slow-flow components because each entity requires specifically tailored treatment, and to diagnose associated complications.

Slow-Flow Combined Vascular Anomaly Syndromes

Klippel-Trénaunay syndrome

Klippel-Trénaunay syndrome (KTS) affects one lower extremity in 95% of patients and is defined by at least two of the following abnormalities: cutaneous capillary malformations (port-wine stain) of the affected limb; VM or varicose veins; or soft tissue or bony overgrowth of the affected limb.\(^51,52\) The port-wine stain is the most common feature, seen in 98% of patients.\(^52\) KTS is frequently associated with persistent embryologic veins including the lateral vein of the thigh (also known as the marginal vein or the vein of Servelle), and persistent sciatic veins. There may be aplasia or hypoplasia of the lymphatic trunks, with associated lymphedema and cutaneous lymphatic vessels; anomalies of the deep venous system, including aneurysmal dilatation, duplication, aplasia, and hypoplasia.\(^51,53–55\)

At the orthopedic level, imaging is useful in assessing bony overgrowth, with the affected limb demonstrating increased size longitudinally and circumferentially. The limb overgrowth continues until physeal closure. It is best assessed with radiographs. In the case of lower-extremity involvement, frontal view of the legs from the hips to the ankles can be obtained to assess leg length discrepancy, and aid in possible treatment planning. Soft tissue overgrowth can be assessed by MRI.\(^56\)

The LM and venous anomalies of KTS can be evaluated by the same techniques used for these entities in isolation, namely US, MRI, and venography (Fig. 9).

Maffucci syndrome

Maffucci syndrome (MS) is the combination of enchondromas and VM, with bony and vascular lesions usually appearing in childhood. The enchondromas are most common in the hands and feet. There is a significant risk of malignant degeneration to chondrosarcoma with a wide range of reported incidence from 15% to 40%.\(^56–58\) Patient’s with MS also have an increased risk of noncartilaginous tumors, which is why the syndrome has been thought of as a generalized mesodermal dysplasia. The overall malignancy risk has been reported from 23% to 100%.\(^57\) Reported neoplastic associations include spindle cell hemangioedotheliomas, ovarian tumors, and fibrosarcoma.\(^57,59\)

In assessing the bony changes of MS, radiographs are particularly helpful to visualize the enchondromas, which appear as lucent expansile bony lesions, demonstrating the ring and arc appearance of cartilaginous matrix (Fig. 10A). Rapidly expanding lesions should be followed to assess for evidence of soft tissue mass and cortical destruction, which may indicate malignant degeneration. This can be further assessed by MRI, although biopsy is typically needed for confirmation.

The soft tissue abnormalities of MS are best evaluated by MRI (Fig. 10B), although radiographs

Fig. 9. A 3-year-old boy with KTS who had weeping lymphatic vesicles on the skin. Coronal STIR image of the right lower extremity (A) and axial T2 FS image through the distal femur (B) demonstrating subcutaneous microcystic LM (arrows) and intramuscular VM (arrowheads). (C) Two-dimensional time-of-flight MR venography shows persistent sciatic vein (arrows) and large marginal vein (arrowheads).
may demonstrate phleboliths in the soft tissues related to the VM.

Blue rubber bleb nevus syndrome
This syndrome is characterized by VM that involve the skin and viscera, predominately the gastrointestinal tract. The name comes from the appearance of the skin lesions, which are small (millimeters to 4 cm) bluish protuberances that feel rubbery.

The superficial VM can be imaged using US with Doppler, demonstrating the low flow in the lesions; MRI is needed to assess deeper lesions, with potential bone and joint involvement and solid organ involvement (Fig. 11). Percutaneous contrast injection of the VM under fluoroscopy is used as a precursor to sclerotherapy in skin lesions. The gastrointestinal tract lesions can be assessed with a variety of modalities, including barium studies, CT, MRI, endoscopy, or video capsule endoscopy. Patients with gastrointestinal VM may have anemia secondary to persistent bleeding and can be treated surgically.

There can be associated skeletal deformity, with pressure effects on the bone from the VM or bony hypertrophy. Joint involvement can cause pain or decreased range of motion.

Fast-Flow Combined Vascular Anomaly Syndromes

Parkes Weber syndrome
Parkes Weber syndrome (PWS) must be distinguished from KTS. It is also characterized by cutaneous capillary malformation, with hypertrophy of the affected limb. However, it features AVF, making it a high-flow vascular syndrome lacking the low-flow venous and LM of KTS. The marginal vein of Servelle is not associated with PWS and there tends to be less musculoskeletal involvement.

The AVF of PWS may be imaged using US with Doppler, although it may be challenging to demonstrate the full extent of the lesion. Alternatively, dynamic MRA or digital subtraction angiography can be performed, demonstrating enlarged feeding arteries and early draining veins (Fig. 12). Because of the AVF, patients with PWS can have skin ulcerations and high-output cardiac failure, which can be treated with transarterial embolization of the fistula.
SUMMARY

US and MRI are the most useful imaging modalities in the evaluation of vascular anomalies. The lesions can be accurately characterized by imaging as hemangiomas or malformations, which can be further subdivided into fast flow or slow flow. Key imaging criteria in differentiating the various vascular anomalies include the presence or absence of a soft tissue mass, the flow characteristics of the lesion, and the pattern of enhancement with contrast.

REFERENCES

15. Iacobas I, Burrows PE, Frieden IJ, et al. LUMBAR: association between cutaneous infantile hemangiomas of

